NASA Advisory Council Space Operations Committee

April 17, 2008

C. Paul Robinson (chair)

Eileen Collins

Pat Condon

Thomas Jones

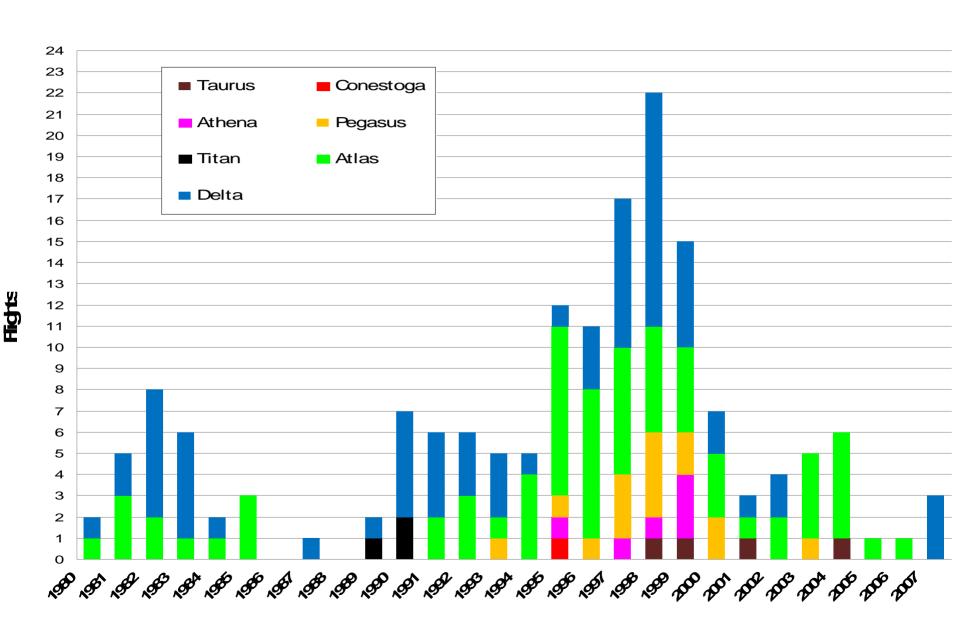
David Longnecker

Benjamin Montoya

- Follow-up on February Meeting Activities
- U.S. Commercial Expendable Launch Vehicle Forecast
 - with the NAC Science Committee
- Commercial Orbital Transportation System (COTS)
- Iran/North Korea/Syria Non-Proliferation Act (INKSNA)
- Pressurized Lunar Rover and Lunar EVA Capabilities
 - with the NAC Exploration Committee
- Forward Activity

Follow-up on February Meeting Activities

- Capturing and transferring operations and accident lessons learned to new employees and developers (CONTINUING TO MONITOR)
- Request additional briefings on pressurized rover power requirements and EVA/suit sealing systems (BRIEFED IN APRIL, WILL CONTINUE TO MONITOR)
- Potential site visit to the Michoud Assembly Facility during April visit (NO OPPORTUNITY IN APRIL)
- Continue to monitor transition of workforce and vendor capabilities from Space Shuttle to Constellation (in conjunction with Human Capital and Exploration Committees) (HUMAN CAPITAL COMMITTEE BRIEFED IN APRIL)


- Continue to monitor progress of Commercial Orbital Transportation System (BRIEFED IN APRIL, WILL CONTINUE TO MONITOR)
- Continue to monitor utilization of ISS as a National Laboratory (with Exploration Committee and Biomedical Subcommittee) (ONGOING ACTION, WILL CONTINUE TO MONITOR)
- Continue to monitor the long-term availability of medium launch capabilities (with Science Committee) (BRIEFED IN APRIL, WILL CONTINUE TO MONITOR)
- Continue to monitor the development of the lunar outpost architecture for indefinite operational life (with Exploration Committee) (CONTINUING ACTION, WILL CONTINUE TO MONITOR)
 - radiation exposure limits for long-duration surface stays
 - comparison with maintaining ISS

U.S. Commercial Expendable Launch Vehicle Forecast

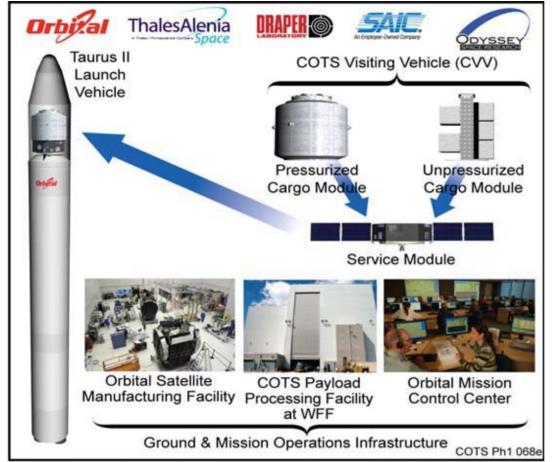
- There are options in all vehicle classes (small, medium, heavy)
- The Delta II is shutting down, with re-start costs currently estimated at ~ \$100M
- There is an overcapacity of small and large (EELV)-class launch services
 - too many suppliers in those classes chasing too few customers and opportunities
 - not so clear in the medium-class without Delta II
- Piggy-backing is an option with larger launch vehicles. However, opportunities for co-manifesting may be limited and may introduce added risk.

U.S. Commercial Expendable Launch History

1980 - 2007

NASA Launch Manifest

as of April 4, 2008								7
FPB Approved 2/01/08 Release 4/04/08	2008	2009	2010	2011	2012	2013	2014	2015
	Q1 Q2 Q3 Q4	Q 1 Q 2 Q 3 Q 4	Q 1 Q 2 Q 3 Q 4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q 1 Q 2 Q 3 Q 4	Q1 Q2 Q3 Q4
Small Class (SC)	A 18 EX 7/15/0	(P))8						
Pegasus (P)		A GLORY (T) 3/1/09						
Taurus (T)	0 CO (T) 12/15/08							
	A GLAST (DH) 5/16/08	ANO AA-N' (D3) 2/1/09						
Medium Class (MC)	STSS ATRR NET 5/31/08 (UF		A AQUARIU 5/23/10	S (D3)				
Delta 732X Series (D3)	A OSTM (D 6/15/08	3) NPP (D) 🔊						
Delta 742X Series (D4)	A 🔷	WISE (D3) 11/1/09	A					
Delta 792X Series (D)	STSS Demo (D 7/16/08 (UR)) 						
Delta 792X H (DH)	TBD (DH) \triangle^{F} 10/15/08							
Intermediate (IC) / Heavy Class (HC)	△ GOES-O (DIV 8/2008	I I) A IMARS SCIENCE		LDCM (AV)				
	ROSS (AV) A	LAB (AV) 9/15/09		Juno (AV)		JW ST (Ariane)		
Delta IV (DIV)	SDO (AV) 12/01/08 (UR) \triangle^{A}	GOES-P (DIV 10/2009	()	8/11/2011 A		6/2013		
Delta IV Heavy (IVH)								
сотѕ		SpaceX-2 2-Qtr/200	<u> </u>					
NOTE: COTS Demo la unch dates shown for informational purposes only - LS P does not control these dates.	SpaceX-1 3-Qtr/2008	◯ S pac						
Vehicle Unassigned					A RBSP 3/2012	TD RS -L 2/2013	△ SM EX-14 4/2014	
				△ Nu S T. 8/201	I AR ∧ SMEX-12	△ SMEX-13 4/2013	△ GPM C 6/2014	
				△ G R A	1 VIL N 11	ARS SCOUT 2 A	M M S 10/2014 \triangle	
					TDR S-K 4/2012		△ GOES-R CY 2014	
							△ Discovery CY 2014	- 12 I



U.S. Commercial Expendable Launch Vehicle Forecast

• Administrator has requested a cohesive strategy on the launch question by the end of the summer. The Committee will review that strategy and brief the Council at future meetings.

- SpaceX has completed consolidating design and production under one roof
- The Space Act Agreement has been motified to reflect SpaceX's new testing and production schedule
- SpaceX still plans the Demo 3 flight to ISS to take place prior to Shuttle retirement
- OSC was recently selected as a second participant in COTS Phase I (development phase)
 - in October, the NAC recommended that NASA maintain at least two COTS participants through Phase I demonstration for ISS cargo delivery

COTS Phase I – Orbital Sciences Corporation

Description & Features:

- Taurus II Launch Vehicle derivative of Taurus I with Aerojet AJ-26 engines (2) & Castor 30 2nd stage
- Standard Service Module used for all missions – derived from STAR & Dawn spacecrafts
- Pressurized Cargo Module Heritage: MPLM
- Unpressurized Cargo Module Heritage: ExPRESS Logistics Carrier

Subs/Suppliers:

*Major Subs

- Thales-Alenia *
- SAIC *
- Draper*
- Odyssey*
- ATK
- Aerojet
- Yuzhnoye Design Office

COTS Phase I - SpaceX

Description:

- Falcon 9 Launch Vehicle
- Dragon Crew/Cargo Spacecraft
- Falcon 9 can lift about 9 mT to ISS orbit and carry about 3 mT of actual cargo

Proposed Features:

- Flexible crew and cargo configurations
- Recoverable launch vehicle and spacecraft
- ISS cargo delivery & return demonstration planned for completion by March 2010
- NASA Investment:
 - Cargo Demonstration up to \$278 M
 - Not funded Crew Option up to \$308 M additional

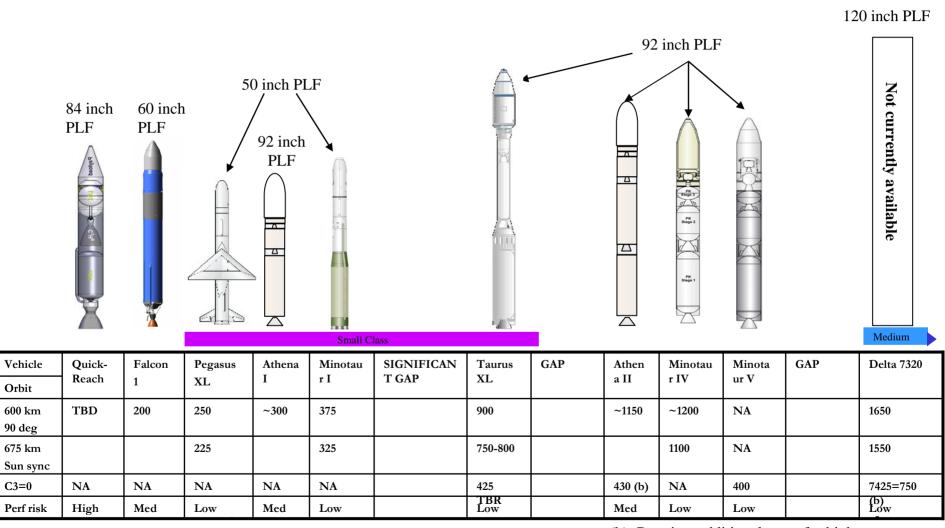
http://www.spacex.com/

- COTS <u>may</u> be a player in medium launch, but is yet an unproven capability for science missions
- There are a number of options in the medium launch category. But the primary motivation with COTS is to:
 - provide a transportation system to ISS in the time gap between Shuttle and Constellation
 - to use the commercial sector and competition to help lower costs
- COTS's biggest benefit in the short term is in delivering pressurized and unpressurized cargo to ISS
 - cargo return and crew transportation may provide opportunities in the longer-term
- There is still uncertainty whether COTS can achieve its goals
 Nevertheless, COTS cargo delivery is critical for maintaining ISS beyond 2010
 - SpaceX milestones have already slipped
- Members of the Space Operations Committee will attend upcoming major design reviews

- NASA has an exemption to INKSNA (formerly ISNA, formerly INA) to purchase Russian crew (*Soyuz* seats) and cargo (*Progress* upmass) through December 31, 2011
- NASA is not pursuing an extension to the INKSNA exemption to buy Russian <u>cargo</u> services after 2011 for ISS, only <u>crew</u> transportation and rescue services
- Exemption language has been submitted to Congress (foreign relations and NASA authorization committees in both houses)

Pressurized Lunar Rover and Lunar EVA Capabilities

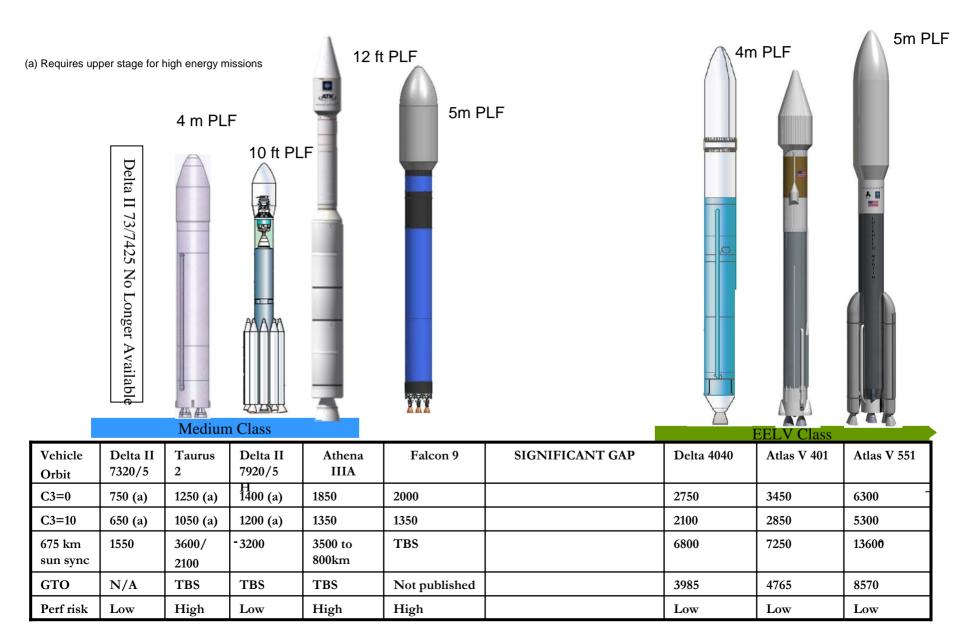
- Participated with Exploration Committee
- A great deal of innovative thinking, potentially an enabler of early and extensive lunar operations. More reviews necessary, but a potential game-changer
- Concur with the Exploration Committee that it is important that the U.S. maintain this kind of capability


Forward Work

- Review NASA's expendable launch vehicle strategy (with Science Committee)
- Invited to attend major design reviews for COTS participants
- Review NASA Space Flight Human System Standards (SFHSS) and Human Integration Design Handbook (HIDH) (with Biomedical Subcommittee)
- Follow-up briefings from the ESMD Advanced Capabilities Division regarding linkages with the developing Lunar Science Institute (with Exploration Committee and Biomedical Subcommittee)
- Follow up briefing from NASA Human Research Program and other subject experts regarding hazards, risks and exposure limits for lunar habitation. (with Exploration Committee and Biomedical Subcommittee)
- Continue to monitor utilization of ISS as a National Laboratory (with Exploration Committee and Biomedical Subcommittee)
- Continue to monitor the development of the lunar outpost architecture for indefinite operational life (with Exploration Committee and Biomedical Subcommittee)
 - radiation exposure limits for long-duration surface stays, including utilization of ISS to accumulate data (with the Biomedical Subcommittee)
 - comparison with ISS hardware maintenance and logistical sustainability

BACKUP

U.S. Expendable Launch Vehicles


Small Class

(b): Requires additional stage for high energy missions

U.S. Expendable Launch Vehicles

Medium and EELV Classes

